Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Sci Rep ; 14(1): 9758, 2024 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-38684820

RESUMO

Our investigation revealed that alterations in sulphur (S) pools are predominantly governed by soil organic carbon (SOC), soil nitrogen (N), microbial biomass, and soil enzyme activities in sandy clay loam (Vertic Ustropept) soil. We employed ten sets of nutrient management techniques, ranging from suboptimal (50% RDF) to super-optimal doses (150% RDF), including NPK + Zn, NP, N alone, S-free NPK fertilizers, NPK + FYM, and control treatments, to examine the interrelation of S with SOC characteristics. Fourier-transform infrared (FT-IR) spectroscopy was utilized to analyze the functional groups present in SOC characterization across four treatments: 100% NPK, 150% NPK, NPK + FYM, and absolute control plots. Principal component analysis (PCA) was then applied to assess 29 minimal datasets, aiming to pinpoint specific soil characteristics influencing S transformation. In an Inceptisol, the application of fertilizers (100% RDF) in conjunction with 10 t ha-1 of FYM resulted in an increase of S pools from the surface to the subsurface stratum (OS > HSS > SO42--S > WSS), along with an increase in soil N and SOC. FT-IR spectroscopy identified cellulose and thiocyanate functional groups in all four plots, with a pronounced presence of carbohydrate-protein polyphenol, sulfoxide (S=O), and nitrate groups specifically observed in the INM plot. The PCA findings indicated that the primary factors influencing soil quality and crop productivity (r2 of 0.69) are SOC, SMBC, SMBN, SMBS, and the enzyme activity of URE, DHA, and AS. According to the study, the combined application of fertilizer and FYM (10 t ha-1) together exert a positive impact on sulphur transformation, SOC accumulation, and maize yield in sandy clay loam soil.


Assuntos
Carbono , Fertilizantes , Nitrogênio , Solo , Enxofre , Zea mays , Fertilizantes/análise , Enxofre/metabolismo , Enxofre/análise , Solo/química , Carbono/metabolismo , Carbono/análise , Zea mays/metabolismo , Zea mays/crescimento & desenvolvimento , Nitrogênio/metabolismo , Nitrogênio/análise , Espectroscopia de Infravermelho com Transformada de Fourier , Milhetes/metabolismo , Biomassa , Agricultura/métodos , Microbiologia do Solo , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/metabolismo
2.
Planta ; 259(4): 89, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38467941

RESUMO

MAIN CONCLUSION: Taiwan oil millet has two types of epicuticular wax: platelet wax composed primarily of octacosanol and filament wax constituted essentially by the singular compound of octacosanoic acid. Taiwan oil millet (TOM-Eccoilopus formosanus) is an orphan crop cultivated by the Taiwan indigenous people. It has conspicuous white powder covering its leaf sheath indicating abundant epicuticular waxes, that may contribute to its resilience. Here, we characterized the epicuticular wax secretion in TOM leaf blade and leaf sheath using various microscopy techniques, as well as gas chromatography to determine its composition. Two kinds of waxes, platelet and filaments, were secreted in both the leaf blades and sheaths. The platelet wax is secreted ubiquitously by epidermal cells, whereas the filament wax is secreted by a specific cell called epidermal cork cells. The newly developed filament waxes were markedly re-synthesized by the epidermal cork cells through papillae protrusions on the external periclinal cell wall. Ultrastructural images of cork cell revealed the presence of cortical endoplasmic reticulum (ER) tubules along the periphery of plasma membrane (PM) and ER-PM contact sites (EPCS). The predominant wax component was a C28 primary alcohol in leaf blade, and a C28 free fatty acid in the leaf sheath, pseudopetiole and midrib. The wax morphology present in distinct plant organs corresponds to the specific chemical composition: platelet wax composed of alcohols exists mainly in the leaf blade, whereas filament wax constituted mainly by the singular compound C28 free fatty acids is present abundantly in leaf sheath. Our study clarifies the filament wax composition in relation to a previous study in sorghum. Both platelet and filament waxes comprise a protection barrier for TOM.


Assuntos
Milhetes , Sorghum , Humanos , Taiwan , Microscopia Eletrônica de Varredura , Sorghum/metabolismo , Ceras/metabolismo , Folhas de Planta/metabolismo , Epiderme Vegetal/metabolismo
3.
Plant Foods Hum Nutr ; 78(4): 790-795, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37656398

RESUMO

Millet bran as a by-product of millet grain processing remains a reservoir of active substances. In this study, functional millet bran peptides (MBPE) were obtained from bran proteins after alcalase hydrolysis and ultrafiltration. The activity of MBPE was assessed in vitro and in the model organism Caenorhabditis elegans (C. elegans). In vitro, compared to unhydrolyzed proteins, MBPE significantly enhanced the 1,1-diphenyl-2-picrylhydrazyl (DPPH), 2,2'-Azinobis-(3-ethylbenzthiazoline-6-sulphonate (ABTS) and hydroxyl radicals scavenging activity, and the scavenging rate of MBPE with 15,000 U/g alcalase reached 42.79 ± 0.31%, 61.38 ± 0.41 and 45.69 ± 0.84%, respectively. In C. elegans, MBPE at 12.5 µg/mL significantly prolonged the lifespan by reducing lipid oxidation, oxidative stress, and lipofuscin levels. Furthermore, MBPE increased the activities of the antioxidant enzymes. Genetic analyses showed that MBPE-mediated longevity was due to a significant increase in the expression of daf-16 and skn-1, which are also involved in xenobiotic and oxidative stress responses. In conclusion, this study found that MBPE had antioxidant and life-prolonging effects, which are important for the development and utilization of millet bran proteins as resources of active ingredients.


Assuntos
Antioxidantes , Proteínas de Caenorhabditis elegans , Animais , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Longevidade/fisiologia , Milhetes/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Estresse Oxidativo , Peptídeos/farmacologia , Peptídeos/metabolismo , Subtilisinas/metabolismo
4.
J Sci Food Agric ; 103(15): 7785-7797, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37548615

RESUMO

BACKGROUND: Foxtail millet (Setaria italica) is a whole millet grain that has been considered for improving the disorder of glucose and lipid metabolism. The purpose of the work is to explore the extraction and enrichment of polyphenols from foxtail millets which can regulate the disorder of glucose and lipid metabolism by increasing endogenous GLP-1 (glucagon-like peptide-1). RESULTS: The optimum ultrasound-assisted extraction (UAE) of foxtail millet polyphenols (FMPs) was as follows: 70 °C and 400 W and 70% ethanol concentration, further purification using macroporous resin. In vitro, the FMP eluent of 60% ethanol (FMP-60) has the best effect in promoting GLP-1 secretion from L cells among the different active components of FMP. Millet polyphenols (MPs) were obtained from finishing foxtail millet with the bran removed by the same extraction and purification method. Compared with MP-60, FMP-60 mainly included eight active phenolic constituents and contained more ferulic acid, p-coumaric acid, 2-hydroxycinnamic acid, and coniferaldehyde. After gavage treatment of diet-induced obese (DIO) mice with FMP-60, FMP-60 promoted endogenous GLP-1 secretion in mice and ameliorated disorders of glucolipid metabolism in DIO mice. CONCLUSION: FMP-60 could improve glucose homeostasis and ameliorates metabolic disease by promoting the endogenous GLP-1 level and preventing weight gain in DIO mice. © 2023 Society of Chemical Industry.


Assuntos
Polifenóis , Setaria (Planta) , Animais , Camundongos , Milhetes , Glucose , Camundongos Obesos , Dieta , Homeostase , Etanol , Lipídeos
6.
J Sci Food Agric ; 103(10): 4742-4754, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-36764833

RESUMO

Minor millet grains are the abode of healthy constituents of human concern that contribute to healthy longevity. Additionally, they are excellent in nutritional value including macronutrients namely, protein (7-13%), carbohydrates (60-70%), fat (1.5-5%), fiber (2-7%) and for micronutrients as well namely; iron, calcium, phosphorus, and magnesium, etc. All these beneficial traits along with the availability of bioactive constituents (polyphenols and antioxidants) prove them to be therapeutic in action and also uplift the immunity among users. Employed isolation tactics for starch also govern yield characteristics and is usually preferred by way of wet method. Minor millets are abundant in starch (50-70%) thus application broadness is another attribute which could be addressed in vivid food segments. In case, native starches somehow possess least application credentials in food and non-food sectors thus modification is the only alternative to eliminate shortcomings. As in trend, modification using physical, chemical, and enzymatic ways have a wide impact on the properties of millet starch. The present review summarizes the nutritional, bioactive and therapeutic potential of minor millets, along with ways of starch modification and product development through millet involvement. © 2023 Society of Chemical Industry.


Assuntos
Milhetes , Amido , Humanos , Milhetes/química , Amido/química , Grão Comestível , Valor Nutritivo , Antioxidantes
7.
Food Chem ; 411: 135474, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-36681026

RESUMO

Phenolics of browntop millet extracted in solvents with varying polarities [water, methanol, acetone (80%), ethanol (70%)] were comparatively assessed for their phenolic profiles, antioxidant activities, DNA damage protection and enzyme inhibitory properties. Results indicated that acetone (80%) and ethanol (70%) were most effective in extracting millet phenolics than other solvents. Gallic, caffeic and ferulic acids were the major phenolic acids, myricetin and kaempferol were the most abundant flavonoids detected in all the extracts of browntop millet. Phenolics extracted in 80% acetone and 70% ethanol offered noticeable contributions toward several antioxidant mechanisms and prevented the oxidative DNA damage than water and methanol extracts. All the millet extracts exhibited potent inhibition towards α-glucosidase than α-amylase activities. These results suggest that the solvents and their polarities impacted the extraction and bioactivities of millet phenolics and provided useful information for the effective utilization of browntop millet as a functional food ingredient to manage hyperglycemia.


Assuntos
Antioxidantes , alfa-Amilases , Antioxidantes/farmacologia , Antioxidantes/análise , Solventes , alfa-Glucosidases/metabolismo , Milhetes/metabolismo , Metanol , Acetona , Extratos Vegetais/farmacologia , Estresse Oxidativo , Água , Etanol , Flavonoides
8.
Food Chem ; 411: 135503, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-36682165

RESUMO

The effects of cellulase hydrolysis separately combined with hydroxypropylation, carboxymethylation and phosphate crosslinking on the physicochemical properties and antioxidant activity of millet bran dietary fibre (MBDF) were investigated. Compared to cellulase hydrolysis alone, these dual modifications more effectively improved the soluble fibre content, water-swelling ability, viscosity, emulsifying capacity and cation-exchange capacity of MBDF but reduced the emulsion stability, brightness and polyphenol content of MBDF (P < 0.05). MBDF modified by cellulase hydrolysis combined with hydroxypropylation showed the highest emulsifying capacity (60.03 m2/g) and oil-adsorption capacity (3.32 g/g) but the lowest nitrite ion-adsorbing ability (NIAA). MBDF modified by cellulase hydrolysis with carboxymethylation showed the highest surface hydrophobicity, cation-exchange capacity (0.352 mmol/g) and NIAA (152.89 µg/g). MBDF modified by cellulase hydrolysis combined with phosphate crosslinking exhibited excellent copper ion-adsorbing ability (19.97 mg/g) and viscosity (19.33 cp). Moreover, these dual modifications all enhanced the Fe2+ chelating ability and reducing power of MBDF (P < 0.05).


Assuntos
Antioxidantes , Celulases , Antioxidantes/química , Milhetes , Fibras na Dieta , Hidrólise
9.
J Nutr Biochem ; 115: 109271, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36657531

RESUMO

Polyphenols are bioactive compounds that occur naturally in plants, and they are widely used for disease prevention and health maintenance. In present study, the effects of millet shell polyphenols (MSPs) in thwarting atherosclerosis were explored. The results found that MSPs effectively inhibited the ability of macrophages to phagocytose lipids, and reduced the secretion of inflammatory factors IL-1ß and TNF-α by obstructing the expression of STAT3 and NF-κB in macrophages. Eventually, MSPs hindered the formation of macrophage-derived foam cells. On the other hand, MSPs promoted the transformation of HASMCs from synthesis to contraction by regulating the gene expression levels of smooth muscle myosin heavy chain (SMMHC), desmin (DES), smoothelin (SMTN) and elastin (ELN). Lipid phagocytosis inhibited along with this process, thereby reducing the formation of smooth muscle cell-derived foam cells. In addition, experiments in ApoE-/- mice also showed that MSPs increased high-density lipoprotein cholesterol (HDL-C). Collectively, MSPs play a role in preventing atherosclerosis by impeding foam cell production. This study offers an integrative strategy for thwarting plaque formation in the early stages of atherosclerosis in cardiovascular disease.


Assuntos
Aterosclerose , Células Espumosas , Camundongos , Animais , Células Espumosas/metabolismo , Milhetes , Aterosclerose/metabolismo , Macrófagos/metabolismo , NF-kappa B/metabolismo
10.
Nutr Rev ; 81(6): 684-704, 2023 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-36219789

RESUMO

Millet is consumed as a staple food, particularly in developing countries, is part of the traditional diet in a number of relatively affluent countries, and is gaining popularity throughout the world. It is a valuable dietary energy source. In addition to high caloric value, several health-promoting attributes have been reported for millet seeds. This review describes many nutritional characteristics of millet seeds and their derivatives that are important to human health: antioxidant, antihypertensive, immunomodulatory or anti-inflammatory, antibacterial or antimicrobial, hypocholesterolemic, hypoglycemic, and anti-carcinogenic potential, and their role as modulators of gut health. There are several varieties, but the main focus of this review is on pearl millet (Cenchrus americanus [synonym Pennisetum glaucum]), one of the most widely eaten millet crops grown in India, though other millet types are also covered. In this article, the health-promoting properties of the natural components (ie, proteins, peptides, polyphenols, polysaccharides, oil, isoflavones, etc.) present in millet seeds are discussed. Although many of these health benefits have been demonstrated using animal models in vitro studies, human intervention-feeding trials are required to confirm several of the potential health benefits of millet seeds. Based on the nutritional and health-promoting attributes known for pearl millet (discussed in this review), finger millet and foxtail millet are suggested as good candidates for use in future nutritional interventions for improved human health.


Assuntos
Milhetes , Pennisetum , Animais , Humanos , Polifenóis , Produtos Agrícolas , Pennisetum/química , Antioxidantes
11.
J Food Sci ; 88(1): 477-490, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36444531

RESUMO

A novel peptide Ser-Asp-Asp-Val-Leu (SDDVL) of excellent zinc-chelating capacity (13.77 mg/g) was identified in millet bran protein hydrolysates. In silico prediction demonstrated that SDDVL had no potential toxicity. The results of structural characterization demonstrated that both amino group and carboxyl group of SDDVL were the primary zinc-chelating sites. Moreover, SDDVL-zinc chelate showed higher stability (p < 0.05) than ZnSO4 and zinc gluconate under different processing conditions including most pasteurization conditions, heating at 100°C for 10-50 min, various pH values (8.0-10.0), treatment of glucose (4-8 g/100 g) or NaCl (1-4 g/100 g), and simulated gastrointestinal digestion. In addition, SDDVL-zinc chelate showed higher zinc transport capacity than ZnSO4 and zinc gluconate in Caco-2 cells (p < 0.05). These results suggested that millet bran peptide had a positive effect on the gastrointestinal stability and bioavailability of Zn, and SDDVL-zinc chelate could be used as ingredient of zinc supplements. PRACTICAL APPLICATION: The current study provided a practical method to identify peptides of excellent zinc-chelating capacity from millet bran protein hydrolysates. This study demonstrated that in silico prediction assisted with suitable database was a fast, practical, and economic way to evaluate the security and to analysis the physicochemical properties of novel peptides. Moreover, it provided an efficient method to assess the stability of peptide-zinc chelate under different food processing conditions, which was the theoretical basis for utilization of peptide as ingredient of zinc fortifications.


Assuntos
Milhetes , Hidrolisados de Proteína , Humanos , Hidrolisados de Proteína/química , Células CACO-2 , Peptídeos/química , Zinco/química , Manipulação de Alimentos
12.
J Food Sci ; 87(12): 5263-5275, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36321649

RESUMO

This study aimed to investigate the composition, structure, in vitro antioxidant, and hypoglycemic activities of a novel water-soluble MBP-1, an extract from millet bran, isolated by DEAE-52 cellulose and purified by Sephadex G-100. The results showed that MBP-1 was mainly composed of xylose, mannose, galactose, rhamnose, and arabinose with a molar ratio of 0.72:0.59:76.26:1.04:0.83 and a molecular weight of 6.6×104  Da, and its purity was 98%, and the yield was 3.76%. MBP-1 has an irregular granular structure by atomic force microscopy and scanning electron microscopy, and the anomeric carbon in MBP-1 molecule has α-configuration and ß-configuration by NMR and FTIR. The in vitro scavenging abilities of MBP-1 for·OH, DPPH, O2·- , and ABTS+ were 73.5%, 80%, 69.8%, and 75.2%, respectively, and the chelating activity for Fe2+ was 50%, and the inhibition rates of α-glucosidase and α-amylase were 78.5% and 74.6%, respectively, which indicated that MBP-1 possessed strong antioxidant and hypoglycemic activities. The results indicated that MBP-1 have certain application prospects in food-related fields.


Assuntos
Antioxidantes , Milhetes , Antioxidantes/química , Hipoglicemiantes/farmacologia , Água , Polissacarídeos/química
13.
Int J Mol Sci ; 23(18)2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36142707

RESUMO

As one of the oldest agricultural crops in China, millet (Panicum miliaceum) has powerful drought tolerance. In this study, transcriptome and metabolome analyses of 'Hequ Red millet' (HQ) and 'Yanshu No.10' (YS10) millet after 6 h of drought stress were performed. Transcriptome characteristics of drought stress in HQ and YS10 were characterized by Pacbio full-length transcriptome sequencing. The pathway analysis of the differentially expressed genes (DEGs) showed that the highly enriched categories were related to starch and sucrose metabolism, pyruvate metabolism, metabolic pathways, and the biosynthesis of secondary metabolites when the two millet varieties were subjected to drought stress. Under drought stress, 245 genes related to energy metabolism were found to show significant changes between the two strains. Further analysis showed that 219 genes related to plant hormone signal transduction also participated in the drought response. In addition, numerous genes involved in anthocyanin metabolism and photosynthesis were confirmed to be related to drought stress, and these genes showed significant differential expression and played an important role in anthocyanin metabolism and photosynthesis. Moreover, we identified 496 transcription factors related to drought stress, which came from 10 different transcription factor families, such as bHLH, C3H, MYB, and WRKY. Further analysis showed that many key genes related to energy metabolism, such as citrate synthase, isocitrate dehydrogenase, and ATP synthase, showed significant upregulation, and most of the structural genes involved in anthocyanin biosynthesis also showed significant upregulation in both strains. Most genes related to plant hormone signal transduction showed upregulated expression, while many JA and SA signaling pathway-related genes were downregulated. Metabolome analysis was performed on 'Hequ red millet' (HQ) and 'Yanshu 10' (YS10), a total of 2082 differential metabolites (DEMs) were identified. These findings indicate that energy metabolism, anthocyanins, photosynthesis, and plant hormones are closely related to the drought resistance of millet and adapt to adversity by precisely regulating the levels of various molecular pathways.


Assuntos
Antocianinas , Secas , Trifosfato de Adenosina/metabolismo , Antocianinas/metabolismo , Citrato (si)-Sintase/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Isocitrato Desidrogenase/genética , Metaboloma/genética , Milhetes/genética , Milhetes/metabolismo , Reguladores de Crescimento de Plantas , Piruvatos , Amido/metabolismo , Estresse Fisiológico/genética , Sacarose , Fatores de Transcrição/metabolismo , Transcriptoma
14.
Pestic Biochem Physiol ; 187: 105214, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36127040

RESUMO

This study aimed to improve the stability of Cinnamomum tamala essential oil (CTEO) via encapsulating into chitosan nanoemulsion (CsNe) through an ionic-gelation technique and explore its food preservative efficacy against aflatoxigenic strain of Aspergillus flavus (AFLHPSi-1, isolated from stored millet), aflatoxin B1 (AFB1) contamination, and lipid peroxidation, causing qualitative deterioration of stored millets. The CTEO was characterized through gas chromatography-mass spectrometry (GC-MS) analysis that confirmed the presence of linalool as a major component occupying approximately 82.64% of the total oil. The synthesized nanoparticles were characterized through scanning electron microscopy (SEM), fourier transform infrared (FTIR) spectroscopy, and X-ray diffraction (XRD) analysis. The encapsulation efficiency (EE) and loading capacity (LC) of CTEO-CsNe were found to be 97.71% and 3.33%, respectively. In vitro release study showed a biphasic release pattern: with an initial burst release followed by a controlled release of CTEO. During investigation of efficacy, the CTEO-CsNe caused complete inhibition of A. flavus growth, and AFB1 biosynthesis at 1.0 and 0.8 µL/mL, respectively. The CTEO-CsNe exhibited its antifungal mode of action by altering fungal plasma membrane integrity (ergosterol inhibition) and permeability (leakage of important cellular constituents), and antiaflatoxigenic mode of action by inhibiting cellular methylglyoxal biosynthesis. CTEO-CsNe showed high free radical scavenging capacity (IC50 = 5.08 and 2.56 µL/mL) against DPPH•+ and ABTS•+ radicals, respectively. In addition, CTEO-CsNe presented remarkable preservative efficacy, inhibiting AFB1 and lipid peroxidation in model food system (Setaria italica) without altering their organoleptic properties. Based on overall results, CTEO-CsNe can be recommended as a novel shelf-life enhancer of stored millet samples.


Assuntos
Quitosana , Cinnamomum , Óleos Voláteis , Aflatoxina B1/metabolismo , Antifúngicos/química , Antifúngicos/farmacologia , Quitosana/química , Quitosana/farmacologia , Cinnamomum/metabolismo , Preparações de Ação Retardada , Grão Comestível , Ergosterol , Conservantes de Alimentos/química , Conservantes de Alimentos/farmacologia , Radicais Livres , Milhetes/metabolismo , Óleos Voláteis/química , Óleos Voláteis/farmacologia , Aldeído Pirúvico
15.
Sci Rep ; 12(1): 12562, 2022 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-35869134

RESUMO

Brukina is a millet based fermented milk product which is consumed as a beverage in Ghana. It is however prone to aflatoxin M1 (AFM1) contamination, which is a serious health challenge for low and middle-income countries in subtropical regions. This study aimed at evaluating AFM1 levels and cancer risks associated with brukina (n = 150) sampled from different locations of the Greater Accra Region of Ghana. AFM1 were measured with High-Performance Liquid Chromatography (HPLC) connected to a Fluorescence Detector (FLD).Cancer risk assessments were also conducted using models prescribed by the Joint FAO/WHO Expert Committee on Additives (JECFA). Out of the 150 samples analyzed for AFM1, 80/150 (53%) tested positive between the range 0.00 ± 0.001-3.14 ± 0.77 µg/kg. Cancer risk assessments of AFM1 produced outcomes which ranged between 0.64 and 1.88 ng/kg bw/day, 0.31-9.40, 0.0323, and 1.94 × 10-3-0.06 for cases/100,000 person/yr for Estimated Daily Intake (EDI), Hazard Index (H.I), Average Potency, and Cancer Risks respectively for all age categories investigated. It was concluded that the consumption of brukina posed adverse health effects on the majority of the age categories in the different locations of Greater Accra Region since the calculated H.Is were greater than one (> 1). Therefore, contamination of brukina with AFM1 should be considered a high priority in public health and Ghana's cancer risk management actions.


Assuntos
Aflatoxina M1 , Neoplasias , Aflatoxina M1/análise , Animais , Grão Comestível/química , Contaminação de Alimentos/análise , Gana/epidemiologia , Humanos , Leite/química , Milhetes , Neoplasias/epidemiologia , Neoplasias/etiologia
16.
Food Chem ; 391: 133222, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35598393

RESUMO

Climate change has led to rediscovery of minor drought tolerant grains such as millet. Among its bioactive molecules, steryl ferulates have been poorly explored. Steryl ferulates composition of was investigated by high performance liquid chromatography-diode array detector-tandem mass spectrometry and high resolution tandem mass spectrometry in twenty-two millet samples and also in some fermented and microwave heated samples. Six compounds were found in Panicum, Pennisetum, Eleusine and Setaria genera, with a prevalence of campestanyl and sitostanyl ferulate. The lowest steryl ferulates content was found in Panicum, with values ranging from 2.98 ± 0.04 µg/g to 8.72 ± 0.41 µg/g. Foxtail millet and finger millet showed the highest amount with 46.07 ± 5.20 µg/g and 85.29 ± 4.30 µg/g, respectively. As for pearl millet, microwave heating and fermentation increased steryl ferulates by two (33.77 ± 0.88 µg/g) and five (75.83 ± 1.25 µg/g) times, with respect to the untreated sample. Microwave heating and fermentation could be used to increase steryl ferulates in millet.


Assuntos
Eleusine , Panicum , Pennisetum , Ácidos Cumáricos/análise , Grão Comestível/química , Fermentação , Micro-Ondas , Milhetes
17.
Ultrason Sonochem ; 86: 106006, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35462135

RESUMO

Crocin (saffron bioactive) loaded protein nanoparticles were prepared from three underutilised cereal varieties viz., sorghum (SPCN), foxtail millet (FPCN) and pearl millet (PPCN) using ultrasonication technique. The particle size of crocin loaded protein complex was attained in the nano range with reduced polydispersity index and negative zeta potential. The encapsulation efficiency of crocin in protein nanoparticles was found to be 83.78% (FPCN), 78.74 % (SPCN) and 70.01% (PPCN). The topographical images of crocin loaded protein nano complex was revealed using field emission-scanning electron microscopy (FE-SEM). The attenuated total reflectance fourier transform infra-spectroscopy (ATR-FTIR) analysis showed the characteristic peaks of crocin at 956, 1700 and 3350 cm-1 in protein-crocin nanocomplex as a confirmatory test for nanoencapsulation. The antimicrobial activity of crocin loaded protein nanocomplex against three strains (Escherichia coli, Staphylococcus aureus and Fusarium oxysporium) were also evaluated. In vitro release studies showed higher content of crocin released in simulated intestinal conditions ensuring its controlled release at target site. Bioactivity (anti-cancerous and anti-hypertensive) of crocin upon in-vitro digestion were well retained indicating that protein nanoparticles can act as an effective wall material. Our results suggest that protein nanoparticles prepared in this study can act as an effective oral delivery vehicle for crocin that could be used for development of functional foods.


Assuntos
Milhetes , Nanopartículas , Grão Comestível , Nanopartículas/química , Tamanho da Partícula , Staphylococcus aureus
18.
Food Funct ; 13(4): 1881-1889, 2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35084423

RESUMO

Various food-derived bioactive peptides have been found with potential anti-inflammatory effects. Millet bran peptide is a food-derived bioactive peptide extracted from millet bran, a by-product of millet processing. In this study, the anti-inflammatory effect of millet bran peptides was investigated. A lipopolysaccharide (LPS)-induced RAW264.7 cell and an animal experiment model were established to test the anti-inflammatory activity of millet bran peptides in vitro. As indicated by the results, millet bran peptides could significantly reduce the levels of inflammatory factors, including tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß) and prostaglandin E2 (PGE2), in the LPS-induced RAW264.7 cell. As demonstrated by the animal experiment results, millet bran peptides could mitigate the inflammation of spontaneously hypertensive rats (SHRs). According to the western blotting results, millet bran peptides reduced the phosphorylation level of an extracellular signal-related kinase (ERK), I Kappa B (IKB), p65, and p38 of LPS-induced RAW264.7 cells. As indicated by 16S rDNA sequencing analysis results, millet bran peptides could modify the composition of intestinal microbes. In brief, millet bran peptides could have anti-inflammatory activities in vivo and in vitro and mitigate the inflammation of LPS-induced RAW264.7 cells by regulating the signaling pathways of nuclear factor-κB (NF-κB) and mitogen-activated protein kinase (MAPK). The above research has laid a theoretical basis for the application of plant-derived peptides in health food.


Assuntos
Anti-Inflamatórios/farmacologia , Fibras na Dieta/farmacologia , Milhetes/química , Proteínas de Plantas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Animais , Citocinas/metabolismo , Camundongos , Peptídeos/farmacologia , Células RAW 264.7 , Ratos , Ratos Endogâmicos SHR
19.
Arch. latinoam. nutr ; 71(3): 218-227, sept. 2021. tab, graf
Artigo em Espanhol | LILACS, LIVECS | ID: biblio-1353317

RESUMO

The objective of this work was to develop cookies using sorghum, germinated millet and chia flours. Four formulations (F) were used: F-sorghum (100% sorghum flour); F-Sorghum + chia (50% sorghum flour and 50% chia flour), F-millet (100% millet flour) and F-millet + chia (50% millet flour and 50% chia flour). The germinated millet flour was submitted to microbiological analysis. All cookies were evaluated in relation to chemical and sensory analyses, according to AOAC and hedonic nine-point scale, respectively. The statistical analysis was performed by the variance analysis and Tukey test at 5% probability. The F-millet formulation showed the least humidity content (4.59 ± 0.25g/100g), while chia containing cookies showed lesser concentrations of carbohydrates (F-sorghum + chia: 44.35 ± 4.34g/100g and F-millet + chia: 41.03 ± 1.40g/100g) and higher ash content (F-sorghum + chia: 3.80 ± 0.02g/100g and F-millet + chia: 3.42 ± 0.24g/100g) and of protein (F-sorghum + chia: 15.38 ± 0.44 g/100g and F-millet + chia: 18.06 ± 0.53 g/100g). The caloric value and the lipids content did not differ among formulations. The sensory analysis had 57 evaluators. The cookies produced with chia and germinated millet had higher rates for flavor, texture and general impression. In general, all tested biscuits had good sensory acceptance and nutritional quality being an alternative to increase the consumption of bioactive compounds and antioxidants(AU)


El objetivo fue desarrollar galletas utilizando harina de sorgo, mijo germinado y chía. Se utilizaron cuatro formulaciones (F): F-sorgo (100% harina de sorgo); Sorgo F + chía (50% harina de sorgo y 50% harina de chía), mijo F (100% harina de mijo) y mijo F + chía (50% harina de mijo y 50% harina de chía). La harina de mijo germinada se sometió a análisis microbiológico. Las galletas fueron sometidas a análisis químico y sensorial, según la AOAC y una escala hedónica de nueve puntos, respectivamente. El análisis estadístico se realizó mediante análisis de varianza y prueba de Tukey al 5% de probabilidad. La formulación F-mijo tuvo menor contenido de humedad (4,59 ± 0,25 g/100g), mientras que las galletas que contenían chía tuvieron concentraciones más bajas de carbohidratos (F-sorgo + chía: 44,35 ± 4,34 g/100g y F-mijo + chía: 41,03 ± 1,40 g / 100g), mayor contenido de cenizas (F-sorgo + chía: 3,80 ± 0,02 g/100g y F-mijo + chía: 3,42 ± 0,24 g/100g) y proteínas (F-sorgo + chía: 15,38 ± 0,44 g/100g y F mijo + chía: 18,06 ± 0,53 g/100g). El valor calórico y el contenido de lípidos no difirieron entre las formulaciones. El análisis sensorial contó con 57 evaluadores. Las galletas producidas con chía y mijo germinado tenían notas más altas de sabor, textura e impresión general. Las galletas testadas tuvieron buena aceptación sensorial y calidad nutricional, siendo una alternativa para incrementar el consumo de compuestos bioactivos y antioxidantes(AU)


Assuntos
Técnicas Microbiológicas , Sorghum , Biscoitos , Farinha , Milhetes , Valor Nutritivo , Sementes , Lipídeos , Antioxidantes
20.
Food Res Int ; 147: 110565, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34399541

RESUMO

To improve the adsorption capacities and hypoglycemic properties of millet bran dietary fibre (MBDF), four methods including acrylate-grafting, carboxymethylation, heat assisted with cellulase hydrolysis, and enzymatic hydrolysis combined with acrylate-grafting were used. The results demonstrated that all carboxymethylation, acrylate-grafting, and enzymatic hydrolysis combined with acrylate-grafting improved soluble dietary fibre content, water swelling ability and α-amylase-inhibition activity of MBDF. They also increased oil, cholesterol, sodium cholate, copper ion and nitrite ion adsorption capacities of MBDF. But carboxymethylation, acrylate-grafting and enzymatic hydrolysis combined with acrylate-grafting decreased polyphenol content, glucose-binding ability and glucose dialysis retardation index of MBDF (p < 0.05). The heat assisted with cellulase hydrolysis increased soluble dietary fibre content, polyphenol content, sodium cholate-adsorption capacity, and hypoglycemic properties of MBDF including glucose-binding ability, glucose dialysis retardation index and α-amylase-inhibition activity; but reduced adsorption capacity of MBDF on cholesterol and copper ion (p < 0.05). Changes in structure of MBDF caused by these modification methods were proved by the results of scanning electron microscopy and Fourier-transformed infrared spectroscopy analysis. These results highlight potential applications of these modified MBDFs as ingredients of hypolipidemic and hypoglycemic foods, or scavenger of nitrite and copper ion.


Assuntos
Hipoglicemiantes , Milhetes , Adsorção , Fibras na Dieta , Diálise Renal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA